SHIELD: an integrative gene expression database for inner ear research

نویسندگان

  • Jun Shen
  • Déborah I. Scheffer
  • Kelvin Y. Kwan
  • David P. Corey
چکیده

The inner ear is a highly specialized mechanosensitive organ responsible for hearing and balance. Its small size and difficulty in harvesting sufficient tissue has hindered the progress of molecular studies. The protein components of mechanotransduction, the molecular biology of inner ear development and the genetic causes of many hereditary hearing and balance disorders remain largely unknown. Inner-ear gene expression data will help illuminate each of these areas. For over a decade, our laboratories and others have generated extensive sets of gene expression data for different cell types in the inner ear using various sample preparation methods and high-throughput genome-wide approaches. To facilitate the study of genes in the inner ear by efficient presentation of the accumulated data and to foster collaboration among investigators, we have developed the Shared Harvard Inner Ear Laboratory Database (SHIELD), an integrated resource that seeks to compile, organize and analyse the genomic, transcriptomic and proteomic knowledge of the inner ear. Five datasets are currently available. These datasets are combined in a relational database that integrates experimental data and annotations relevant to the inner ear. The SHIELD has a searchable web interface with two data retrieval options: viewing the gene pages online or downloading individual datasets as data tables. Each retrieved gene page shows the gene expression data and detailed gene information with hyperlinks to other online databases with up-to-date annotations. Downloadable data tables, for more convenient offline data analysis, are derived from publications and are current as of the time of publication. The SHIELD has made published and some unpublished data freely available to the public with the hope and expectation of accelerating discovery in the molecular biology of balance, hearing and deafness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification and characterization of an inner ear-expressed human melanoma inhibitory activity (MIA)-like gene (MIAL) with a frequent polymorphism that abolishes translation.

To discover new cochlea-specific genes as candidate genes for nonsyndromic hearing impairment, we searched in The Institute of Genome Research database for expressed sequence tags isolated from the cochlea only. This led to the cloning and characterization of a human gene named melanoma inhibitory activity-like (MIAL; HGMW-approved symbol OTOR alias MIAL) gene. In situ hybridization revealed MI...

متن کامل

MicroRNA gene expression in the mouse inner ear.

MicroRNAs (miRNAs) are small non-coding RNAs that function through the RNA interference (RNAi) pathway and post-transcriptionally regulate gene expression in eukaryotic organisms. While miRNAs are known to affect cellular proliferation, differentiation, and morphological development, neither their expression nor roles in mammalian inner ear development have been characterized. We have investiga...

متن کامل

Induction of inner ear fate by FGF3.

Loss-of-function experiments in avians and mammals have provided conflicting results on the capacity of fibroblast growth factor 3 (FGF3) to act as a secreted growth factor responsible for induction and morphogenesis of the vertebrate inner ear. Using a novel technique for gene transfer into chicken embryos, we have readdressed the role of FGF3 during inner ear development in avians. We find th...

متن کامل

Understanding inner ear development with gene expression profiling.

Understanding the development of the inner ear requires knowing the spatial and temporal pattern of gene expression, and the functions of those gene products. In the last decade, hearing research has benefited tremendously from the progress of the human and mouse genome projects, as amply illustrated by the identification of many deafness genes in both human and mouse. However, the sheer amount...

متن کامل

Otitis Media Impacts Hundreds of Mouse Middle and Inner Ear Genes

OBJECTIVE Otitis media is known to alter expression of cytokine and other genes in the mouse middle ear and inner ear. However, whole mouse genome studies of gene expression in otitis media have not previously been undertaken. Ninety-nine percent of mouse genes are shared in the human, so these studies are relevant to the human condition. METHODS To assess inflammation-driven processes in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015